Mapping subunit location on the Saccharomyces cerevisiae origin recognition complex free and bound to DNA using a novel nanoscale biopointer.

نویسندگان

  • Paul D Chastain
  • Jayson L Bowers
  • Daniel G Lee
  • Stephen P Bell
  • Jack D Griffith
چکیده

The Saccharomyces cerevisiae origin recognition complex (ORC) is composed of six subunits and is an essential component in the assembly of the replication apparatus. To probe the organization of this multiprotein complex by electron microscopy, each subunit was tagged on either its C or N terminus with biotin and assembled into a complex with the five other unmodified subunits. A nanoscale biopointer consisting of a short DNA duplex with streptavidin at one end was used to map the location of the N and C termini of each subunit. These observations were made using ORC free in solution and bound to the ARS1 origin of replication. This mapping confirms and extends previous studies mapping the sites of subunit interaction with origin DNA. In particular, we provide new information concerning the stoichiometry of the ORC-ARS1 complex and the changes in conformation that are associated with DNA binding by ORC. This versatile, new approach to mapping protein structure has potential for many applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Architecture of the Saccharomyces cerevisiae Origin Recognition Complex Bound to Origins of DNA Replication

The Origin Recognition Complex (ORC) is thought to be required for the initiation of DNA replication in all eukaryotes. In Saccharomyces cerevisiae, ORC is bound to origins of DNA replication throughout the cell cycle and directs the assembly of higher-order protein-DNA complexes during G1. I have investigated the architecture of yeast ORC bound to origin DNA. Determination of DNA residues impo...

متن کامل

Context based computational analysis and characterization of ARS consensus sequences (ACS) of Saccharomyces cerevisiae genome

Genome-wide experimental studies in Saccharomyces cerevisiae reveal that autonomous replicating sequence (ARS) requires an essential consensus sequence (ACS) for replication activity. Computational studies identified thousands of ACS like patterns in the genome. However, only a few hundreds of these sites act as replicating sites and the rest are considered as dormant or evolving sites. In a bi...

متن کامل

The architecture of the DNA replication origin recognition complex in Saccharomyces cerevisiae.

The origin recognition complex (ORC) is conserved in all eukaryotes. The six proteins of the Saccharomyces cerevisiae ORC that form a stable complex bind to origins of DNA replication and recruit prereplicative complex (pre-RC) proteins, one of which is Cdc6. To further understand the function of ORC we recently determined by single-particle reconstruction of electron micrographs a low-resoluti...

متن کامل

Genome-wide distribution of ORC and MCM proteins in S. cerevisiae: high-resolution mapping of replication origins.

DNA replication origins are fundamental to chromosome organization and duplication, but understanding of these elements is limited because only a small fraction of these sites have been identified in eukaryotic genomes. Origin Recognition Complex (ORC) and minichromosome maintenance (MCM) proteins form prereplicative complexes at origins of replication. Using these proteins as molecular landmar...

متن کامل

The budding yeast silencing protein Sir1 is a functional component of centromeric chromatin.

In fission yeast and multicellular organisms, centromere-proximal regions of chromosomes are heterochromatic, containing proteins that silence gene expression. In contrast, the relationship between heterochromatin proteins and kinetochore function in the budding yeast Saccharomyces cerevisiae remains largely unexplored. Here we report that the yeast heterochromatin protein Sir1 is a component o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 279 35  شماره 

صفحات  -

تاریخ انتشار 2004